TESTE INTERMÉDIO - 11.º ANO - MATEMÁTICA A

19 de Maio de 2006

RESOLUÇÃO - VERSÃO 4

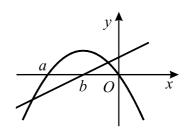
Grupo I

1. No percurso de A para B, a distância do ponto P ao ponto A vai aumentando. No percurso de B para C, a distância do ponto P ao ponto A vai diminuindo. Passado o ponto C, a distância do ponto P ao ponto A nunca deixa de aumentar. Portanto, a função em causa começa por ser crescente, depois decresce, para, em seguida, ser novamente crescente.

Resposta B

2. Um dos zeros da função quadrática $g \in 0$. Designemos por a o outro zero desta função. Designemos por b o zero da função afim f.

Podemos elaborar o seguinte quadro:



x	$-\infty$	a		b		0	$+\infty$
f(x)	_	_	_	0	+	+	+
g(x)	_	0	+	+	+	0	_
$\frac{f(x)}{g(x)}$	+	n.d.	_	0	+	n.d.	_

n.d. - não definida

Do quadro resulta que o conjunto solução da inequação $\frac{f(x)}{g(x)} \geq 0$ é $]-\infty,\,a\,[\,\,\cup\,\,[\,b,0\,]$

Como só a alternativa $\, {\bf A} \,$ tem esta forma, concluímos ser esta a resposta correcta (sendo $a=-4 \,$ e b=-2).

Resposta A

3. O gráfico da função g pode obter-se a partir do gráfico da função f por meio da seguinte composição de transformações:

Transformação	Novo Gráfico	Expressão da nova função	
Simetria em relação ao eixo das abcissas.		-f(x)	
Translacção associada ao vector $(-1,0)$, ou seja, deslocamento de uma unidade, para a esquerda.		-f(x+1)	
Translacção associada ao vector $(0,-1)$, ou seja, deslocamento de uma unidade, para baixo.		-f(x+1)-1	

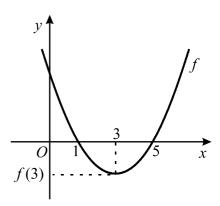
Portanto, g(x) = -f(x+1) - 1

Resposta A

4. Atendendo a que o conjunto solução da inequação $f(x) \leq 0$ é o intervalo [1,5], podemos concluir que os zeros de f são 1 e 5 e que o gráfico de f é uma parábola com a concavidade voltada para cima.

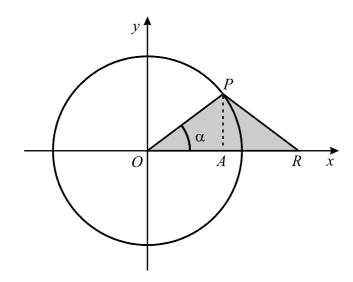
A abcissa do vértice da parábola é $\frac{1+5}{2} = 3$.

Deste modo, o contradomínio de f é o intervalo $[f(3)\,,\,+\infty[.$



Resposta C

5. Designemos por A o ponto médio do segmento [OR].



Como o triângulo [OPR] é isósceles, o segmento [AP] é a altura relativa à base [OR].

Tem-se que $\overline{OA}=\cos\alpha$, pelo que $\overline{OR}=2\cos\alpha$.

Por outro lado, $\ \overline{OP} = \overline{PR} = 1$

Perímetro do triângulo $\ [OPR] = 1 + 1 + 2\cos\alpha = 2 + 2\cos\alpha = 2\left(1 + \cos\alpha\right)$

Resposta **B**

6. Como $sen\ \alpha<0$ e $tg\ \alpha>0$ podemos concluir que o ângulo α pertence ao 3º quadrante. Neste quadrante, tem-se que $\cos\alpha<0$.

Como $\cos \alpha < 0$, vem $\cos \alpha = -\sqrt{1- sen^2 \alpha}$

Resposta **D**

7. Dado que β é uma solução da equação $sen \, x = \frac{1}{5}$, tem-se $sen \, \beta = \frac{1}{5}$

Portanto, $cos(\frac{\pi}{2} - \beta) = sen \beta = \frac{1}{5}$

Conclui-se assim que $\; \frac{\pi}{2} \; - \; \beta \; \;$ é uma solução da equação $\; \cos x = \frac{1}{5} \;$

Resposta D

Grupo II

1.1.
$$f(x) \le -1 \iff 3 + \frac{1}{2-x} \le -1 \iff 4 + \frac{1}{2-x} \le 0 \iff \frac{9-4x}{2-x} \le 0$$

x	$-\infty$	2		$\frac{9}{4}$	$+\infty$
9-4x	+	+	+	0	_
2-x	+	0	_	_	_
$\frac{9-4x}{2-x}$	+	n.d.	_	0	+

n.d. - não definida

Por observação do quadro, conclui-se que o conjunto pedido é $\left]2$, $\frac{9}{4}\right]$

- **1.2.** O gráfico da função $\,f\,$ tem uma assimptota vertical cuja equação é $\,x=2\,$ e uma assimptota horizontal cuja equação é $\,y=3\,$
- **2.** Designemos por x o número de hectares de trigo e por y o número de hectares de milho.

Função objectivo:
$$L = 600 x + 500 y$$

Restrições:

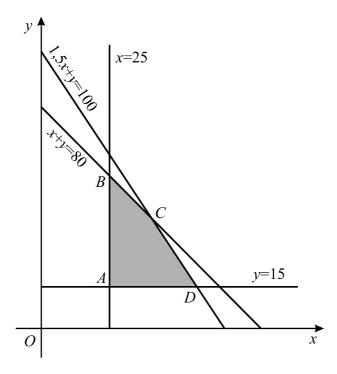
$$x + y \le 80$$

$$x \ge 25$$

$$y \ge 15$$

$$1500 x + 1000 y \le 100000$$
 (equivalente a $1.5 x + y \le 100$)

A intersecção dos semiplanos definidos pelas inequações que exprimem as restrições é a região admissível. Graficamente, temos

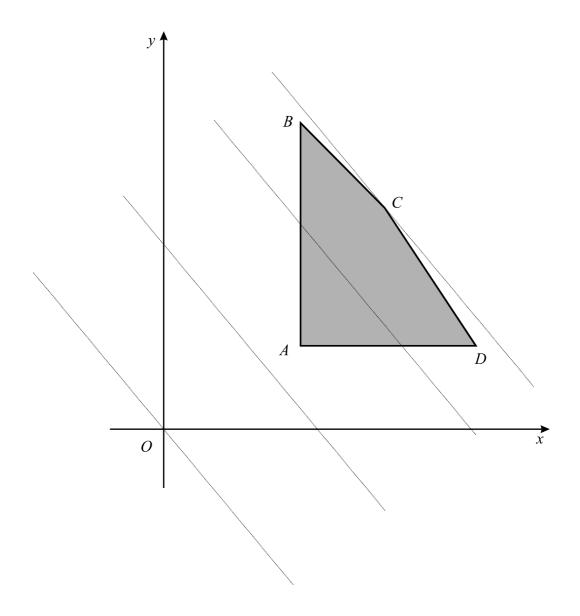


A região admissível tem quatro vértices: $A,\ B,\ C\ \ {\rm e}\ \ D.$

Tem-se que:

Vértice	Intersecção das rectas de equações	Coordenadas
A	x = 25 e $y = 15$	(25, 15)
B	x = 25 e $x + y = 80$	(25, 55)
C	x + y = 80 e $1.5x + y = 100$	(40, 40)
D	y = 15 e $1.5x + y = 100$	(170/3, 15)

Como a função objectivo é $\,L=600\,x\,+\,500\,y$, vamos traçar a recta de equação $\,600\,x\,+\,500\,y=0\,\,$ e vamos deslocá-la paralelamente a si própria.



Constata-se que a solução óptima é atingida no vértice C(40,40).

Em alternativa, podemos calcular o valor da função objectivo nos vértices (dado que a função objectivo tem o seu valor máximo num vértice da região admissível).

Vértice	\boldsymbol{x}	\boldsymbol{y}	600x+500y	L
A	25	15	$600 \times 25 + 500 \times 15$	22500
В	25	55	$600 \times 25 + 500 \times 55$	42500
C	40	40	$600 \times 40 + 500 \times 40$	44000
D	170/3	15	$600 \times 170/3 + 500 \times 15$	41500

Observando os valores da tabela, concluímos que a solução óptima é atingida no vértice (40,40).

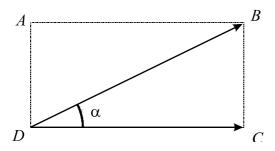
Portanto, para maximizar o lucro, o agricultor deve semear 40 hectares de trigo e 40 hectares de milho.

3. Tem-se que
$$\overrightarrow{DB} \cdot \overrightarrow{DC} = \left(\overrightarrow{DA} + \overrightarrow{DC} \right) \cdot \overrightarrow{DC} =$$

$$= \overrightarrow{DA} \cdot \overrightarrow{DC} + \overrightarrow{DC} \cdot \overrightarrow{DC} = 0 + \left\| \overrightarrow{DC} \right\|^2 = \left\| \overrightarrow{DC} \right\|^2 = \overrightarrow{DC}^2$$

Em alternativa, apresenta-se a seguinte resolução:

Seja $\, \alpha \,$ o ângulo dos vectores $\, \overrightarrow{DB} \,$ e $\, \overrightarrow{DC} \,$



Tem-se que
$$\ \overrightarrow{DB}$$
 . $\overrightarrow{DC} = \left\| \overrightarrow{DB} \, \right\| \, \left\| \, \overrightarrow{DC} \, \right\| \, \cos \alpha$

Atendendo a que
$$\ \cos \alpha = \frac{\overline{DC}}{\overline{DB}}$$
 e a que

$$\left\| \overrightarrow{DB} \, \right\| = \overline{DB} \quad \text{e} \quad \left\| \overrightarrow{DC} \, \right\| = \overline{DC} \ , \ \text{vem}$$

$$\overrightarrow{DB} \cdot \overrightarrow{DC} = \overline{DB} \times \overrightarrow{DC} \times \frac{\overline{DC}}{\overline{DB}} = \overline{DC} \times \overline{DC} = \overline{DC}^2$$

4.1.

Uma recta é perpendicular a um plano se for perpendicular a duas rectas concorrentes contidas no plano. Portanto, uma recta é perpendicular a um plano se um vector director da recta for perpendicular a dois vectores não colineares do plano.

Consideremos então um vector director da recta dada e verifiquemos que esse vector é perpendicular aos vectores \overrightarrow{ST} e \overrightarrow{SV} .

Como a recta é definida pela condição $\ x=0 \ \land \ y=2 \, z$, tem-se que os pontos (0,0,0) e (0,2,1) pertencem à recta, pelo que o vector

$$\vec{u} = (0, 2, 1) - (0, 0, 0) = (0, 2, 1)$$

é um vector director da recta.

Por outro lado, como $\begin{bmatrix} RSTU \end{bmatrix}$ é um quadrado de área igual a 16, tem-se que $\overline{ST}=4$, pelo que as coordenadas de S e de T são, respectivamente, (2,2,0) e (-2,2,0).

Portanto,

$$\overrightarrow{ST} = T - S = (-2, 2, 0) - (2, 2, 0) = (-4, 0, 0)$$

$$\overrightarrow{SV} = V - S = (0,0,4) - (2,2,0) = (-2,-2,4)$$

Vejamos então se o vector \overrightarrow{u} é perpendicular aos vectores \overrightarrow{ST} e \overrightarrow{SV} . Tem-se:

$$\overrightarrow{u} \cdot \overrightarrow{ST} = (0, 2, 1) \cdot (-4, 0, 0) = 0 + 0 + 0 = 0$$

 $\overrightarrow{u} \cdot \overrightarrow{SV} = (0, 2, 1) \cdot (-2, -2, 4) = 0 - 4 + 4 = 0$

Concluímos que o vector \overrightarrow{u} é perpendicular aos vectores \overrightarrow{ST} e \overrightarrow{SV} , pelo que a recta dada é perpendicular ao plano STV.

Equação do plano

Um vector normal ao plano: $\overrightarrow{u} = (0, 2, 1)$

Um ponto do plano: (2, 2, 0)

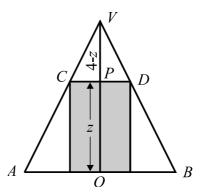
Uma equação do plano:
$$0(x-2)+2(y-2)+1(z-0)=0 \Leftrightarrow 2y-4+z=0 \Leftrightarrow 2y+z=4$$

O ponto P desloca-se ao longo do segmento [OV], nunca coincidindo com o ponto O, nem com o ponto V. Sendo assim, a cota do ponto P varia entre a cota do ponto O, que é O, e a cota do ponto V, que é O.

O domínio da função $\,f\,$ é, portanto, o intervalo $\,]\,0,4\,[.$

Com vista a determinar uma expressão que defina a função f, comecemos por determinar o raio $\, r \,$ do cilindro, em função de $\, z . \,$

Na figura está representada a secção, da pirâmide e do cilindro, obtida pela intersecção destes com o plano yOz.



De acordo com este esquema, e atendendo a que os triângulos $\begin{bmatrix} VPD \end{bmatrix}$ e $\begin{bmatrix} VOB \end{bmatrix}$ são semelhantes, podemos escrever

$$\frac{\overline{PD}}{\overline{OB}} = \frac{\overline{VP}}{\overline{VO}} \iff \frac{r}{2} = \frac{4-z}{4} \iff r = \frac{4-z}{2}$$

O volume do cilindro, em função de z, será, então

$$f(z) = A_{base} \times altura =$$

$$= \pi \times r^2 \times z =$$

$$= \pi \times \left(\frac{4-z}{2}\right)^2 \times z =$$

$$= \pi \times \frac{z^2 - 8z + 16}{4} \times z =$$

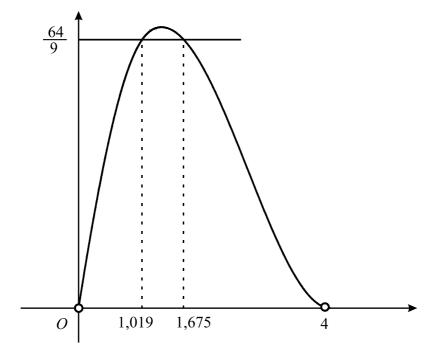
$$= \pi \times \frac{z^3 - 8z^2 + 16z}{4} = \pi \left(\frac{z^3}{4} - 2z^2 + 4z\right)$$

4.2.2.

$$V_{\it pirâmide} = {A_{\it base} \times altura \over 3} = {16 \times 4 \over 3} = {64 \over 3}$$

$$f(z) > \frac{1}{3} \times \frac{64}{3} \iff f(z) > \frac{64}{9}$$

Com o objectivo de resolver graficamente a inequação $f(z)>\frac{64}{9}$, obteve-se, na calculadora, o gráfico da função f e a recta de equação $y=\frac{64}{9}$



Da observação do gráfico, podemos concluir que a cota do ponto $\,P\,$ deve variar entre 1,019 e 1,675.